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Executive Summary  

Power grid sustainability and reliability are main targets to be achieved by grid operators in the 
future smart grid scenario. To this purpose, modern distribution grids need to be endowed with 
smart management and control functionalities, able to provide autonomous and self-healing 
features to the system. However, with the increasing penetration of new technologies connected 
to the system, grid management is becoming more and more complex. This calls for the use of 
new methodologies and additional intelligence to design smart solutions able to promptly detect 
possible anomalies and to quickly react by automatically reconfiguring the grid and restoring the 
safe and reliable conditions.  

The goal of WP3 is twofold. First, the objective is to design specific algorithms that are essential 
to provide the distribution system with autonomous and self-healing features. The first algorithm 
is the Load Prediction (LP) and Generation Prediction (GP) service, which is used to identify in 
advance potential contingencies or conditions close to the allowed boundaries, with the goal of 
triggering adequate countermeasures. The second algorithm is the Fault Location Isolation and 
Service Restoration (FLISR), which acts in case of fault occurrence to isolate the faulty section of 
the grid and to automatically restore the power supply in the non-faulty areas. In addition to this, 
the second goal of WP3 is to investigate the possibility to adopt innovative machine learning 
techniques for the design of the above-mentioned services. From this perspective, WP3 thus 
explores the potential associated to new-generation data driven techniques for dealing with the 
challenges and complexity of today’s power systems. 

This report provides first an overview of the approaches and techniques adopted for the 
considered SOGNO services. Then, the proof of concept validation and performance evaluation 
of the designed algorithms is presented. Last but not least, the interfaces required for the 
implementation and integration of these services within the SOGNO platform are documented.  
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1. Introduction 

The project Service Oriented Grid for the Network of the Future (SOGNO) is funded by the Work 
Program H2020-LCE-2017-SGS. It has officially started in January 2018. 

1.1 Related project work 

This deliverable describes the work done in tasks T3.4 and T3.5 of the work package WP3 as 
finalization of the work developed in T3.1 and T3.2, whose preliminary results were already 
presented in the previous deliverable D3.1. More in detail, T3.1 dealt with the investigation of 
innovative concepts coming from the machine learning field that can be used for the design of 
autonomous and self-healing services, while T3.2 focused on the design of two specific services, 
namely the Load and Generation Prediction services (LP and GP, respectively) and the Fault 
Location Isolation and Service Restoration (FLISR) service. The design of these algorithms has 
been based on the data-driven approaches deemed more suitable for this purpose, according to 
the analysis performed in T3.1. Subsequently to the design work, T3.4 carried out the validation 
of these services at proof of concept level and performed a preliminary evaluation of their 
performance, based on laboratory simulations. T3.5 defined instead the interfaces needed for the 
integration of such services in the SOGNO cloud platform in view of their final deployment on the 
field. 

As shown in Figure 1, WP3 and WP2 can be identified as the research WPs in the project, where 
innovative concepts for the development of the services have been explored resulting in the final 
design of the SOGNO services. The developed services have been then handed over to WP4 for 
their integration within the SOGNO cloud platform hosting the services, allowing thus the final 
deployment in the field trials.  

 

Figure 1: An overview of SOGNO activities. 

1.2 Objective of the report 

The main objective of this deliverable is to provide the detailed design and implementation behind 
the autonomous and self-healing power system services, which are part of the work conducted in 
WP3. The two services implemented within WP3 are the Fault Location Isolation and Service 
Restoration (FLISR) and Load and Generation Prediction (LP and GP). The concept and 
definitions of the two services as well as the machine learning based methods and techniques 
used for their design have been already introduced in a previous deliverable (D3.1) and are here 
recalled and completed with a more in-depth explanation of the services implementation. The 
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report then provides a proof of concept validation of the services via tests performed on some 
benchmark data and scenarios. 

1.3 Outline of the Report 

The report consists of three main parts covering the service design, the service validation and the 
description of the service interfaces. The first part (Chapter Fehler! Verweisquelle konnte nicht 
gefunden werden.) introduces the two services designed to provide autonomous and self-
healing features to the distribution grid, namely the Load and Generation Prediction and the Fault 
Location Isolation and Service Restoration (FLISR) services. Chapter 2 provides an update of the 
previous deliverable D3.1 regarding the details on the data-driven approaches implemented 
behind the algorithms as well as some additional technical aspects. The second part (Chapter 
Fehler! Verweisquelle konnte nicht gefunden werden.) provides a validation of the developed 
services by means of simulations and laboratory test procedures. Finally, the last part (Chapter 
4) contains the scheme of the interfaces required for integrating the services in the Virtualized 
Substation. 

1.4 How to Read this Document 

This report can be read as a standalone document. However, other deliverables can be helpful 
to get a better view of the concepts advanced in the SOGNO project and to have more details on 
the autonomous and self-healing grid services. In particular, other deliverables closely related to 
this one are:  

D1.1 – Scenario & architectures for stable & secure grid (M12): This deliverable provides a 
description of power system scenarios investigated in the project for current and future distribution 
grids. 

D3.1 – Description of new SOGNO techniques for autonomous and self-healing power systems 
(M10): This deliverable discusses the role of machine learning and other data driven approaches 
for the possible design of services aimed at providing self-healing features to the grid.  

D3.4 – Description of initial interfaces & services for autonomous and self-healing power systems 
(M12): This deliverable gave a first presentation of the preliminary design of the grid self-healing 
services and the corresponding interfaces.  
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2. Services and techniques to achieve autonomous and self-
healing power systems 

The main focus in this chapter is to provide a detailed and in-depth description of the services 
implemented in WP3, namely: 

 Load and Generation Prediction (LP and GP, respectively) 

 Fault Location Isolation and Service Restoration (FLISR) 

Machine learning and data analytics algorithms are the main methods employed for the design of 
these services. These approaches have proved their reliability in several fields and applications, 
such as classification, regression and pattern recognition problems. Several models can be 
implemented for the design of the LP, GP and FLISR services. For example, one can consider 
the load prediction service as a regression problem, where a suitable machine learning function 
defines the relationship between the input (or trained data) and output (or predicted data). 
Different machine learning models can have different characteristics, resulting into more or less 
suitable methods for addressing the problem at hand. In the following, the models (and the 
underlying concepts behind them) used for the design of the LP, GP and FLISR algorithms are 
presented. 

2.1 Load prediction service 

The purpose of this service is to provide the forecast of load or power consumption at a specific 
connection point of the grid for future time slots based on the power consumption at past time 
slots, i.e. based on the historical power consumption. The forecast can refer in general to a 
particular load (e.g. an industrial or commercial load) or to an aggregation of several downstream 
loads (e.g. prediction of the consumption at a MV/LV substation supplying several residential 
customers). The load or power consumption utilized to train the machine learning based model is 
usually sampled at a certain rate (for example every 1, 5, or 10 minutes, which can be the 
reporting rate of the measurement devices or the result of an a posteriori aggregation of historical 
measurement data); as a result, the achievable output is the power consumption predicted with 
the same reporting rate. Figure 2 shows an example structure of a dataset of power consumption 
sampled in a one-minute rate.  

 

Figure 2: A sample of input data used for load prediction service.  

The one-minute power consumption data shown in Figure 2 is taken from an household electricity 
consumption dataset in [1]. The first column gives the date, the second column is the particular 
time instant within the day when the power is measured. The third and fourth columns represent 
the household global minute-average active and reactive power consumed in kilowatt, 
respectively. These values are those that are relevant for the training of the LP service and they 
will be implicitly considered from now onwards (the rest of the columns in Figure 2 are the active 
energy read via three sub-meters, which are of no use for the designed LP service). As explained 
earlier, since the available consumed power provided is in a one-minute rate, the predicted power 
in this case can also be in a one-minute rate. Alternatively, if such time resolution is not needed, 
the available data can be post-processed to create aggregated profiles with lower granularity. If 
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aggregated data are provided in input for the training, the same time resolution used for the data 
aggregation automatically defines the time resolution of LP service forecast. 

The first task of the load prediction service is to prepare the data necessary to carry out the 
prediction. Depending on an “a priori” data analysis, the data can be clustered in different ways 
in order to improve the load prediction performance. For example, in presence of a dataset 
covering several years of historical power consumption, it is possible to analyze the possible 
presence of specific patterns at seasonal level, monthly level, or to simply distinguish working 
days from holydays and weekends. In general, data clustering can be applied if there is a sufficient 
amount of data (usually several years of data). In this case, for example, the active and reactive 
power consumption for one month of the year (or one day of the week) can be used to train a 
machine learning based method in order to predict these values for the same month in the next 
year (or for the same day in the next week).  

Figure 3 represents, as an example, the block diagram of the load prediction service, when the 
active and reactive power is classified based on the month of the year (or the day of the week) to 
create appropriate consumption profiles. Afterwards, the data per profile is used to train the 
associated machine learning algorithm, which is responsible for providing the forecast of 
consumed power at future time slots.  

 

Figure 3: The block diagram of the load prediction service. 

When the available set of historical data is not too large (as it is likely to expect in distribution 
grids with recent installations of the measurement infrastructure) the dataset cannot be clustered 
since this would lead to have too small datasets to be used for the training of the machine learning 
algorithm. In such a scenario, all the available data should be used without applying any specific 
clustering, and the adopted machine learning algorithm has to be able to deal with this scenario 
and to still provide forecasts as accurate as possible. To this purpose, it is important to adopt 
deep learning algorithms able to detect possible existing patterns, related to both the long-term 
and short-term variations of the power profiles. In order to fulfill such a requirement, the machine 
learning approach chosen for the implementation of the SOGNO LP service is the Long Short 
Term Memory (LSTM) Deep Neural Network (DNN). 

The LSTM neural network is based on a concept of a sliding window to define the inputs and 
outputs needed for the training, and therefore for the definition of the prediction model. In [2], 
three different methods have been discussed for similar purposes; i.e., in the context of electrical 
load prediction. Approaches can for example change depending on the number of features used 
to determine the forecast (univariate and multivariate, respectively) or on the number of desired 
outputs from the prediction algorithm (single-step or multi-step prediction, respectively). In the 
case of the SOGNO LP service, a univariate multi-step prediction algorithm has been used in 
order to obtain the day-ahead prediction of a specific load with the desired time resolution. The 
prediction is done in the form of one-step ahead time series fashion, i.e., the quantity at time slot 
t+1 is predicted based on the observations until time slot t. This can be generally described by 
the following model: 

����� � � 	�� , ����, … , ���
� �  �         (1) 



SOGNO D3.3 v1.0 

 Page 10 (41) 

where f(.) is the prediction model, �� , ����, … , ���
 are the samples of electrical power 

consumption until time slot t, and ����� is the estimated power at time t+1. The term � is the 
prediction error, which in general will be always present. In the case of day-ahead forecast, the 
quantities � indicated in the above equation will represent vectors of data associated to all the 
time steps within the day. For example, if the load forecast is performed with a 15-minutes 
resolution, each variable � will represent a 96-size vector of the power consumption for the day 
t. As a consequence, the above-mentioned relationship indicates that several days have to be 
used for the prediction of the power consumption in the following day. 

Based on this concept, several inputs containing the load consumption associated to N days are 
used, together with the associated power consumption at day N+1, to train the LSTM machine 
learning algorithm. As a result of the training, a DNN model is obtained, which can be used then 
to perform the load prediction. The specific settings of the LSTM model (such as number of layers 
for the DNN, number of neurons in each layer, etc.) can be flexibly modified and selected 
according to the specific scenario where the service has to be implemented. In general, a first 
phase of tuning of the algorithm with the specific data of the location under analysis is 
recommended in order to customize the model accordingly and to aim at prediction performance 
as accurate as possible. 

For its own characteristics, the implemented LSTM prediction algorithm can be also easily 
adapted to perform predictions with different time horizons. While day-ahead forecasting is often 
the most desired feature for Distribution System Operators (DSOs), additional predictions with 
shorter time scale (i.e. one hour-ahead) can be also important for DSOs to refine their operation 
plans. Such a characteristic can be above all important for possible contingency prediction, since 
the one-hour ahead forecast can rely on more updated information and can be consequently more 
accurate and reliable. Taking into account this possible need for the DSOs and the possible use 
of this service for contingency prevention (to obtain preventive self-healing grids), both the day-
ahead and the one-hour ahead forecasting has been implemented for the LP SOGNO service. 
More details on the performance of these algorithms, according to the specific considered 
scenario, are presented in Section 3 showing the proof of concept validation of the service.  

2.2 Power generation prediction service 

While the same structure of the LP algorithm can be theoretically adopted also for the GP service, 
in case of generation based on renewable energy sources additional variables and parameters 
should be taken into account to improve the forecasting accuracy. In fact, weather and 
environmental conditions can have a strong correlation with the level of generated power. In the 
scope of SOGNO, we focus on predicting the power generated in photovoltaic (PV) systems due 
the solar power in the environment. For this matter, the weather information and the associated 
variables are essential to this service. In other words, the weather information is the input to the 
machine learning predictor to provide the amount of generated power due to the renewable 
energy source. More specifically, the feature vector is the weather information, and the target is 
the generated power due to the corresponding weather conditions.  

To apply the above concept, two main requirements exist: i) to collect a sufficiently large set of 
weather/environmental data synchronized with the corresponding generation output; ii) to identify 
the most important weather/environmental parameters to be used as input for the generation 
prediction. Assuming to have the availability of such data over a large period of time, the feature 
(weather input) and target (generation output) matrices at the basis of the GP training can be 
organized as shown in Figure 4.  
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Figure 4: The structure of the raw dataset to be utilized in the power generation 
prediction service. 

In Figure 4, the variables var1, …, var12 indicate the generic weather variables to generate the 
corresponding power. N indicates the number of examples in the dataset (set of weather input 
with the associated generation output available in the historical database). The weather variables 
can be recorded, as an example, in one-hour rate, along with the corresponding power generated. 
The preliminary work done for the design of the GP service consists in the identification of the 
most relevant parameters to be used as input for the training of the machine learning algorithm. 
To this purpose, in the following, the dataset provided in [3] has been considered, which refers to 
generation data collected in Australia as part of a forecasting competition. The weather 
information is obtained from the European Center for Medium-range Weather Forecasts 
(ECMWF) and it contains historical data from 01.04.2012 until 30.05.2014 collected for several 
solar power plants located in Australia. Table 1 provides a detailed description of the raw data 
provided in [3], which have been utilized to test and validate the power GP service.  

Table 1: Raw data description. 

Weather ID Weather variable description and unit. 

Var1 Total column liquid weather (tclw): vertical integral of cloud liquid water 
content [Kg m-2 ]. 

Var2 Total column ice water (tciw): vertical integral of cloud ice water content 
[Kg m-2 ]. 

Var3 Surface pressure (SP) [Pa]. 

Var4 Relative humidity at 1000 mbar (r): it is defined with respect to saturation 
of the mixed phase, i.e. with respect to saturation over ice below -23C 
and with respect to saturation over water above 0C. In the regime in 
between a quadratic interpolation is applied [%]. 

Var5 Total cloud cover (TCC): total cloud cover derived from model levels 
using the model's overlap assumption (either 0 or 1). 
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Var6 10-meter U wind component (10u) [ms-1]. 

Var7 10-meter V wind component (10v) [ms-1]. 

Var8 2-meter temperature (2T) [K]. 

Var9 Surface solar rad down (SSRD): accumulated field [Jm-2]. 

Var10 Surface thermal rad down (STRD): accumulated field [Jm-2]. 

Var11 Top net solar rad (TSR): net solar radiation at the top of the atmosphere 
[Jm-2]. 

Var12 Total precipitation (TP): it is the convective precipitation plus the 
stratiform precipitation (CP +LSP) [m]. 

Several profiles have been created based on the most relevant weather conditions. For this 
matter, feature-selection methods are utilized to identify the most important environmental 
features to be considered as input to the GP service. Via the feature-selection, the dimensionality 
of the feature space is reduced by eliminating the redundancy and the non-meaningful information 
in the dataset. The irrelevant features are eliminated, and the most relevant ones are included in 
the learning process. In this way, the complexity of the learning process is reduced, and the 
performance is improved via the selection of the most pertinent information.   

Throughout the tests, the mutual information (MI) measure (or score) has been utilized as 
indicator for the feature-selection. The MI measure was originally introduced in the field of 
information theory. It measures the mutual dependency between two random variables. Given 
two random variables A and B, their MI measure I(A;B) is expressed as: 

�	�; �� �  � �	�, �� log �	�, ����	����	��� ∈�, ∈�   
where pA and pB denotes the probability density functions (PDFs) of A and B, respectively, and 
p(a,b) denotes their joint PDF [2]. If I(A;B) = 0, this indicates that the two random variables are 
completely independents (thus, no correlation exists among them). As the PDFs of the dataset 
are unknown at this point, the approach suggested in [3] has been considered. Via the known 
number of samples NA and NB for the random variables A and B, respectively, their PDFs are 
estimated by sorting the measurements into k number of clusters based on the k-nearest neighbor 
distance. Indicating with zA(i) and zB(j) the number of measurements in cluster i and j, and with 
zA,B(i,j) the number of measurements in their intersection, the following holds: 

��  	!� ≈ #�	!�$�  

��  	%� ≈ #�	%�$�  

�	!, %�  ≈ #�,�	!, %�$� � $� 
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Figure 5: The MI score for the raw data. 

Figure 5 presents the MI score resulting for all the features in the dataset; namely the 12 weather 
variables along with the date and time (in hour). It can be seen that the hour information is the 
most relevant and important feature to be included in the prediction process, as reasonable to 
expect since the PV generation is strongly dependent on the particular time of the day. After the 
time of the day information, the more important features to be considered are the following: 

1. The hour information, 

2. surface thermal rad down, denoted by var 10, 

3. top net solar rad, denoted by var 11, 

4. surface solar rad down, denoted by var 9, 

5. relative humidity at 1000 mbar, denoted by var 4, and  

6. 2-meter temperature denoted by var8. 

The prediction process employs these six most relevant features. In other words, these are the 
most important features that should be utilized to predict the generated power. However, for the 
sake of simplicity, only the first two most relevant features (except the time of the day information) 
are utilized in the following to create four weather profiles; namely the surface thermal rad down 
(var 10), and top net solar (var 11). The other four weather conditions (including the hour 
information), while not being used for clustering the weather profiles are in any case still utilized 
for training the machine learning algorithm and then for the prediction. The considered weather 
profiles are built as follows, depending on the combination of thermal rad down and top net solar: 

Profile 1: &',�(  )  ��( &  &',��  )  ��� 

Profile 2: &',�(  )  ��( &  &',�� +  ��� 

Profile 3: &',�( +  ��( &  &',��  )  ��� 

Profile 4: &',�( +  ��( &  &',�� +  ��� 
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where j = {1, …, N}. The data for each profile is utilized to train a separate machine learning 
model. In other words, a separate machine learning model, in our case a deep neural network, is 
dedicated to each profile. For the prediction purposes, the future weather conditions can be 
collected from possible local weather provider. The appropriate profile is selected by comparing 
the values of the surface thermal rad down (var 10), and top net solar (var 11) with the previously 
described profiles. The block diagram of the service shown in Figure 6. Potentially, the same 
approach can be tested and implemented for further datasets, and any other weather conditions, 
also depending on the particular availability of data at the considered location.  

 

Figure 6: The block diagram of the generation prediction service.  

2.3 Fault location isolation and service restoration   

The fault location isolation and service restoration (FLISR) is a service providing the automatic 
localization of the fault and the automatic reconfiguration of the grid to minimize the extension of 
the outage and, consequently, to minimize also the number of customers affected by the power 
disruption. Due to these features, FLISR can be seen as the fundamental service providing self-
healing features to the grid during emergency conditions and in case of unplanned power supply 
interruptions.  

The FLISR service is composed of two main parts: i) the localization of the point of the grid where 
the fault occurred, via a dedicated fault location algorithm; ii) the isolation of the fault and 
restoration of the power supply in the non-faulty zones, through a suitable grid reconfiguration 
procedure. The most critical part of the overall process is the fault location detection, since from 
this it depends the possibility to correctly isolate the fault and restore the power supply for the 
customers connected to non-faulty areas. In the fault location process, the first requirement is to 
identify the type of fault that occurred (single phase to ground, three-phase to ground, etc.). In 
fact, depending on the type of fault, different transient conditions occur in the grid and in particular 
for the three phases of the system. Since in SOGNO the goal is to investigate the potential given 
by data driven approaches based on machine learning for the design of the service, it is of 
paramount importance that scenarios leading to completely different conditions are properly 
detected and classified. Once the type of fault is known, the FLISR service requires information 
on the transient conditions occurred due to the fault in order to estimate the possible location of 
the fault. To this purpose, fault scenarios can be created, provided that the needed details on the 
model of the grid are known, in order to train the algorithm and to generate the model needed for 
the automatic fault location.  

If the fault location is carried out successfully, specific logic can be implemented in order to isolate 
the faulty area of the grid and to restore the power supply in the rest of the network. To this 
purpose, the details on the availability of breakers, switches and other possible reconfiguration 
devices in the grid are needed. The particular set-up of the reconfiguration logic has to be 
conceived taking into account the specific grid topology and characteristics and, as a matter of 
fact, needs to be customized for each particular grid scenario. 
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In the following of this Section, the considered approach to implement the FLISR service is 
discussed more in detail. In particular, the focus will be mainly on the FLISR part related to the 
fault location, since this is the module where it can make sense to apply the machine learning 
theory and because, as previously mentioned, this part of the algorithm is the most critical one for 
the successful implementation of the FLISR service. 

2.3.1 Fault identification and location detection 

Among the different possible fault types, the two most common types of fault have been 
considered in the following to validate the underlying concept behind the implementation of the 
fault location algorithm: single line-to-ground fault, and three-phase-to-ground fault. Once data 
from installed sensors are collected, i.e., measurements are read from sensors, the fault is 
categorized into four cases, or classes: phase A-to-ground (AG), phase B-to-ground (BG), phase 
C-to-ground (CG), three-phase-to ground (ABCG). This is done looking at the particular 
combination of voltage and current measurements at the three phases of the system, knowing 
that each class of faults exhibits a different behavior at the direct, inverse and homopolar 
sequences. Figure 7 presents the block diagram of the fault classification approach. A different 
machine learning based algorithm is then used for each category of fault. Since a large set of 
historical data on fault-related measurements is usually rarely available for DSOs, the training of 
the machine learning algorithm has to rely on the set-up of specific simulation scenario 
(customized for the particular grid under analysis) and on the emulation of the different categories 
of faults. Through the generation of a large dataset of fault-related data, it is then possible to train 
the algorithms emulating the acquisition of measurement at grid locations where measurement 
instruments are available and providing these data, together with the associated location of the 
fault, in input to the training process. In such a way, a location estimation model can be obtained 
for each category of fault, which can then be used online to operate when actual faults occur. As 
easy to imagine, since the input data come from simulated scenarios, the successful 
implementation of the fault location algorithm and the correct training of the machine learning 
routine are strictly depending on the availability of accurate models of the grid.  

 

Figure 7: The block diagram of fault location detection within FLISR service. 

2.3.2 Fault isolation and service restoration 

The routine for the automatic reconfiguration of the grid aimed at isolating the fault and restoring 
the power supply in non-faulty zones is strictly dependent on the particular topology, 
characteristics, and availability of reconfiguration devices along the network. Generally speaking, 
the isolation procedure is implemented by opening the closest switches upstream and 
downstream the fault (note that the location of the fault is needed as input from the previously 
described fault location algorithm). The service restoration phase instead consists in closing those 
switches that would allow to supply back disconnected customers, without triggering again the 
fault. The particular reconfiguration of the grid also depends on the meshed or radial topology of 
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the grid, as well as on the number and position of the sectionalizing switches. To this purpose, in 
the SOGNO FLISR service, dedicated routines are implemented for each test grid (or field trial) 
according to the particular structure of the network. 

2.4 Models related to the load and power generation prediction services 

2.4.1 Feed-forward deep neural network 

Feed-forward deep neural network (FFDNN), (also known as multilayer perceptron) is a type of 
artificial neural network. As a supervised machine learning method, DNN has drawn more 
attention in the last decades due to its outstanding performance in different fields; such as 
classification, regression, and pattern recognition tasks. The FFDNN are implemented with 
multiple hidden layers. Each hidden layer contains a certain number of neurons, with certain 
weighs. The weighed input is summed over all layers and transformed through the activation 
functions through until the output layer [5]. The training process takes place such that the cross-

entropy function ℒ	�	-, Θ�, /� is minimized, where - � [&�, &1, … , &2]′ ∈  ℝ2×7 is the training set 

of $ ∈ ℕ samples, and / ∈  ℝ2×� is the predicted target. The observation &9  ∈ ℝ7×� (with M is the 
number of features, and ! ∈ {1, … , $}) is the weather conditions in the case of power generation 
prediction service, or the load consumption for the last one hour in the case of load prediction 
service. Moreover, the function f(.) represents the input-output relationship of the network. The 

set Θ � =>	?� @ A � 1, … , B} denotes the weights of the D hidden layers, where >	?�  ∈  ℝCD×CDEF 

is the weight for the dth layer, which has rd neurons [3].  

2.4.2 Long short-term memory (LSTM) network 

Unlike the traditional DNN, recurrent neural network (RNN) can consider sequences of data, such 
as time series data. A type of RNN is the long short-term memory (LSTM) network, where it has 
recurring connection to itself which provides the ability to consider previous input (at past time 
slots) for prediction. LSTM has overcome the vanishing gradient problem, which is found in RNN 
[6], by introducing a so-called cell state.  

Due to its structure, the LSTM network is capable of learning long-term dependencies. The LSTM 
network consists of a chain of repeated modules of a certain structure, each module is known as 
a unit or a cell. This structure replaces the usual hidden units or layers found in a regular DNN. A 
typical unit consists of a cell gate, an input gate, an output gate and a forget gate [7]. The cell 
gate remembers the values over arbitrary time intervals, and the three other gates control the flow 
of information in and out of the cell. The forget gate allows the network to learn which information 
to forget and remove from the cell state. The input gate controls the amount of information to 
include in the cell state, and the output gate controls the information to be added to the cell state. 
Detailed information can be found in [6].  

2.5 Models related to the FLISR service 

2.5.1 Feed-forward deep neural network 

The FFDNN is as described in 2.4.1, however with the target value is a discrete set of classes / ∈  ℕ2×� instead of real numbers as in the case of prediction.  

2.5.2 Decision tree 

A decision tree (DT) is a non-parametric supervised learning method. It is capable of predicting 
the target class based on learning from simple decision rules implied from the training dataset 
[12]. As indicated by the name, a DT classifier has a tree structure with nodes, edges and leaves. 
Each node in a DT represents a certain feature in the training dataset, whereas each edge or 
branch coming out of a node represents a certain decision rule applied to split the dataset into 
subsets. The decision is a binary rule most of the time. The splitting is terminated until the resulting 
subsets are homogeneous, i.e., all samples belong to the same fault class. The node is then 
terminated, and a leaf is added representing the class [4]. 
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2.5.3 Random forest 

Random forest is an example of an ensemble approach, as in specific bootstrap sampling. The 
underlying idea is to combine a group of DTs in order to construct a more powerful and more 
robust learner against over-fitting [8]. The main characteristic of a RF is that it is built based on 
randomness. Unlike DT, the split in RF is based on the best among a subset of randomly chosen 
predictions at that node [9] [10]. The main idea behind the randomness is to decorrelate the trees, 
such that the resulting ensemble scheme has a low variance [11]. 
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3. Performance evaluation  

3.1 Load prediction service 

The LP service has been tested in different scenarios in order to evaluate the potential 
performance of the implemented LSTM-based algorithm when dealing with different possible 
conditions. To this purpose, the energy consumption readings of single households given in [13], 
which were provided in the framework of a research project in UK have been considered as 
starting dataset. These data provide smart meter reading with 30-min resolution for 5567 
households in London, for one or more years. In the tests presented in the following, different sets 
of households have been considered, either singularly or by aggregating them, in order to assess 
the performance of the algorithm when having a different level of customers aggregation. In fact, 
load profiles become more and more random when moving towards the single-customer level 
and, as a consequence, clear patterns are more difficult to identify making the load prediction 
extremely challenging in such a scenario.  

As presented in Section 2, given that the load prediction service is a standard time series analysis 
problem, a LSTM approach has been utilized to implement the LP service. Several models, i.e., 
hyperparameters, have been tested during the tests. The results presented in the following have 
been obtained using a set-up that proved to be sufficiently reliable in all the conditions, which 
consists of a sequential model with four hidden layers, where each hidden layer has 1 ~ 100 
LSTM units. The LSTM model also has two dropout layers and one dense layer. Finally, a linear 
activation function has been considered.  

For performance evaluation, the root mean squared error (RMSE) metric has been utilized. For 
an n number of tested samples, the MSE can be expressed as:  

GHIJ �   K1L �	M9 N M�9�1

9O�  

where M�9 is the ith (normalized) predicted power, M9 is the ith (normalized) actual value, while i = 1, 
…, n  are the different time steps considered for the day (in the performed tests, 48 time steps 
are considered for each day, since the input dataset is given with a 30-min time resolution).  

 

Figure 8: Actual vs day-ahead forecast of active power for 100 residential households, 
with 100 days in the training set.  
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Figure 8 presents the actual vs predicted active power in case of day-ahead forecasting when the 
total load associated to an aggregation of 100 households is considered. Such a forecast has 
been obtained by training the LSTM model with 100 days of historical data. It is possible to 
observe that the prediction closely follows the actual pattern of the daily consumption profile: in 
particular, both the valley during the night and the power peak during the evening are properly 
tracked, proving that the implemented model is able to correctly identify the existing recurring 
patterns. Figure 9 shows an analogous test performed on the load resulting from the aggregation 
of 100 end-users, but this time carried-out using only one month of data (30 days) for training the 
LSTM model. Also in this case, it is clear that the day-ahead forecast follows in a reliable way the 
actual profile of power consumption over the day. Such a test suggests that the proposed model 
can provide satisfying results also if not too many historical data are available in the storage 
system of the DSO. Therefore, the implementation of the proposed LP service can start being 
effective already short time after the deployment of the measurement infrastructure. 

 

Figure 9: Actual vs day-ahead forecast of active power for 100 residential households, 
with 30 days in the training set.   

Figure 10 presents the day-ahead forecast results for a scenario where the overall load is given 
by the aggregation of 25 residential customers. The comparison to the actual profile shows that 
the prediction in this particular case slightly overestimate the power consumption of the 
aggregated load. Nevertheless, the particular pattern of energy consumption has been again 
identified and the algorithm gives quite reliable results. Similarly, Figure 11 proves that the LP 
algorithm can still work well also if the aggregated consumption of only 5 residential customers is 
monitored. Finally, Figure 12 shows the most extreme case scenario, with the day-ahead 
forecasting of the energy consumption of a single customer. In this case, it is clear that the highly 
random behavior of the final customer can affect the performance of the algorithm and in fact the 
algorithm is not able to track the peak of power consumption. However, even in this challenging 
scenario, the model is still able to provide a quite accurate estimation of the base power consumed 
by the customer. The overall results with a varying number of customer forming the overall load 
consumption, which have been up to now qualitatively evaluated through the power profiles in the 
figures, can also be evaluated quantitatively through the RMSE index presented in Table 2. Here, 
it is possible to notice that the RMSE of the normalized prediction errors clearly show that the 
performance improves for increasing levels of load aggregation. Overall, therefore, the designed 
LP algorithm is expected to work reliably when implemented in MV grids, where the aggregation 
of many LV customers is usually present at the secondary substation. At the same time, however, 
results show that forecasting can be also done down to the LV grid and for small group of end-
users, provided that some pattern exists for the aggregated power consumption profile.  
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Figure 10: Actual vs day-ahead forecast of active power for 25 residential households, 
with 100 days in the training set.  

 

Figure 11: Actual vs day-ahead forecast of active power for 5 residential households, 
with 100 days in the training set. 
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Figure 12: Actual vs day-ahead forecast of active power for a single residential 
household, with 100 days in the training set. 

Table 2: Prediction performance for the LP service.  

Scenario RMSE 

Aggregated profile of 100 customers 0.14 

Aggregated profile of 50 customers 0.17 

Aggregated profile of 25 customers 0.23 

Aggregated profile of 10 customers 0.30 

Aggregated profile of 5 customers 0.37 

Single customer profile 0.64 

3.2 Power generation prediction service 

For the GP service, since the problem at hand is not expressed in terms of time series analysis, 
both FFDNN and LSTM prediction models have been tested. For both the models, several 
hyperparameters have been also tested to come up with the most appropriate settings for the 
dataset in hand.  

The FFDNN has been designed for the four weather profiles with two hidden layers, with each 
one having between 100 and 250 neurons. A dropout layer is also included in the model. 
Furthermore, “relu” is the utilized activation function. Finally, the batch size is 100 ~ 200, and 
number of considered epochs is 40 ~ 100. 

On the other hand, the LSTM for the four profiles have been designed with 150 ~ 250 LSTM units. 
Similar to the DNN, the relu activation function is utilized. The considered batch size is in this case 
50 ~ 400, and the number of epochs is 30 ~ 80.  
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Figure 13: The actual vs the predicted generated power using DNN for weather profile 4. 

 

Figure 14: The actual vs the predicted generated power using LSTM for weather profile1. 

Figure 13 and Figure 14 present a sample of DNN and LSTM performance, respectively. A 
summary of the performance for all profiles is shown in Table 3 and Table 4. Coherently with what 
described in Section 2, input data used for the model training and for the following prediction 
include, in addition to the time information, data about different irradiance level, about the 
temperature and humidity. With this set of input data, the GP is able to accurately track the 
generated power also in presence of intermittent weather conditions, as it can happen during 
cloudy days. However, it is worth noting that often the information on the irradiance condition can 
be unavailable, or in any case it will be given with a certain degree of uncertainty. This of course 
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can have a clear impact on the performance of the GP service, which can degrade coherently 
with the goodness of the irradiance information. In case of lack of irradiance measurements (or 
predictions), other weather and environmental inputs can be used, as shown in Table 1. However, 
the impact of these parameters would be much lower, since their correlation and consistency with 
respect to the generated power is relatively lower. As a consequence, again the GP performance 
could be affected and could degrade due to this. 

Table 3: The prediction performance (measured in MSE) for the power generation 
prediction service using DNN.  

Generation scenario MSE 

Profile 1 0.008281 

Profile 2 0.013618 

Profile 3 0.002284 

Profile 4 0.005285 

 

Table 4: The prediction performance (measured in MSE) for the power generation 
prediction service using the LSTM network.  

Generation scenario MSE 

Profile 1 0.011088 

Profile 2 0.012701 

Profile 3 0.005241 

Profile 4 0.015725 

3.3 Fault location isolation and service restoration  

Performed tests aim at verifying the possibility to use machine learning concepts for the design 
of the fault location module of the FLISR service and at evaluating the accuracy and goodness of 
the results achievable via data-driven approaches.  

To this purpose, tests have been performed on the sample IEEE 13-bus grid, which is a 
benchmark grid often used for fault simulations and fault-related test cases [14]. While being a 
relatively small system, this grid allows having the proof of concept validation of the machine 
learning-based fault location routine and to evaluate its capability of properly identifying the faults 
occurring at different branches or nodes. In the implemented simulation set-up, the grid has been 
modelled following the state-of-the-art approaches for the emulation of the fault conditions. In 
particular, the same assumptions considered in the reference documentation have been done 
regarding the modelling of the equivalent system impedance, of the distribution transformer and 
of the faulted branch/node, in order to reproduce the same short circuit results provided in [14]. 
Furthermore, the overall grid has been modelled using the three-phase distribution system models 
for unbalanced grids, in order to be able to emulate any kind of fault. Figure 16 shows a simple 
schematic, extracted from [14], to show the main components taken into account for the overall 
distribution grid model. 
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Figure 15: IEEE 13-bus test grid [14]. 

 

Figure 16: components models for the fault scenarios simulation [14]. 

Given the presented simulation set-up, the different types of single-phase to ground faults and 
three-phase to ground faults have been simulated in order to create the datasets for the training 
of the fault location algorithm. In particular, for each possible faulty branch, and every type of fault, 
5000 Monte Carlo simulations have been performed. This means that for each type of fault, and 
each branch in which was possible to test that specific type of fault, a set of 5000 measurements 
has been created for the training of the machine learning algorithm. The set of 5000 tests related 
to the same branch have been carried out to randomly extract the position of the fault along the 
branch. Considering that the grid also has single-phase laterals, a total of 160000 tests has been 
generated in total, distributed among the different fault categories in the following way: 

- 30000 for three-phase-to-ground faults (6 possible faulty branches); 

- 40000 for phase A-to-ground faults (8 possible faulty branches); 

- 40000 for phase B-to-ground faults (8 possible faulty branches); 

- 50000 for phase C-to-ground faults (10 possible faulty branches). 

For each one of the created fault scenarios, all the measurements of voltage and current in the 
“during fault” conditions have been saved, in order to emulate the possible presence of different 
measurement configurations in the grid, with a different penetration of measurement devices. The 
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datasets created in this way for each fault category have been then used for the training of the 
machine learning model.  

After the machine learning algorithm training, to evaluate the performance of the developed fault 
location algorithm, the F1 score has been used as key performance indicator. Such an index is a 
measure that gives the accuracy of a classification method in a range from 0 to 1, where F1 

score=0 represents a 0% accuracy, and F1 score= 1 represents a 100% accuracy. More 
specifically, the performance of the system shown in Figure 7 has been finally tested. The dataset 
has two labels to train the two detectors in Figure 7: fault type and fault location labels. The fault 
type is used to train the fault type detector, which is considered as a first stage. As previously 
mentioned, the considered fault types belong to one of the following three categories: AG, BG, 
CG, and ABCG, which indicates single line phase A to ground, single line phase B to ground, 
single line phase C to ground, and three-phase to ground, respectively. The fault location or, in 
other words, the faulty line or segment in the grid, is used as a label to train the fault location 
detector. At the end, the final detection output indicates the fault type, and the fault location 
(segment or line). The following strings are examples of the output given by the overall fault 
location algorithm: 

'AG:8_10' 'AG:8_9' 'AG:8_9' ... 'ABCG:4_5' 'ABCG:3_8' 'ABCG:3_4', 

where the starting label indicates the type of detected fault, while the x_y label indicates the 
terminal nodes of the specific branch of the grid identified as possibly faulty. Tests performed with 
measurement devices located in nodes 632 and 671 and 684 (in all the branching nodes) gave a 
corresponding F1 score= 0.9999. Possible degradation of the results could instead occur when 
only few measurements are available, due to the possibility of having similar fault transient 
conditions for faults occurring in different branches, but with a similar overall short circuit 
impedance. This issue is known in the literature (often referred to as multiple fault location 
problem) and it can be overcome with a proper placement of the measurement instrumentation.  

For the purposes of the FLISR implementation, however, it is worth highlighting that the main 
requirement is only the identification of the area where the fault is, since this is the information 
needed for the automatic coordination of the isolation and service restoration steps. The precise 
identification of the branch can be a plus, since it would allow the DSO to send the crew directly 
at the location where the fault occurred (saving time for the fault search and reducing in this way 
the outage time for the faulty zone), but a rough estimation is in general still a good compromise 
considering the very low penetration of measurements in the distribution grid and the 
simultaneous very large size (from a topological perspective, in terms of sections and nodes) of 
these networks. 
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4. Documentation of the application programming interface 

These interfaces describe the interaction of the various services implemented within the scope of 
the EU project SOGNO. The fundamental architecture pattern is a combination of microservices 
interacting via an MQTT broker. This pattern is used in information technology as it enables 
complex software instances to communicate with each other via defined endpoints independently 
of their implementation. 

The services are mostly decoupled from each other and process a clearly defined task. This 
pattern enables a modular structure of the entire system, so that a failure of one or more services 
does not necessarily mean a failure of the entire system. In addition, new or existing services can 
be directly injected, deleted or updated without any significant impact on the rest of the system. 

Figure 17 describes how the publish/subscribe mechanism between the services should be 
understood. As an example, let us assume that Service B is dependent on the input from Service 
A. Service A will publish its results on a specific predefined topic. The broker will forward the 
results from Service A to Service B, because Service B has subscribed to the topic before. The 
direction of the red components should be read as follows: Service A offers an interface that 
publishes its results in JSON format on Topic X. This JSON message is subscribed to by the B 
service. Once Service B has received these results, it can proceed with the data as its 
implementation requires.  

 

Figure 17: Publish/subscribe mechanism. 

There are services that publish different results on different topics. The topic naming follows a 
certain logic. This consists of the project name followed by the service name and then the direction 
separated by a slash, which separates the topic levels. If necessary, the results types will be 
appended to the end of the name as shown in the Table 5.  

Table 5: Logic of topic naming. 

LOGIC EXAMPLE 

PROJECT_NAME / SERVICE / DIRECTION [/ RESULT_TYP] 

sogno / se / out 

sogno / gui / out / flisr 

sogno / gui / out / topology 

The usage of topic level separators allows to work with placeholders. While the character “+” 
stands for any content of a single layer, the character “#” can be used to select any content in 
layers afterwards. These are provided by the MQTT specification.  For example, a service can be 
notified to all outgoing messages from any service with this simple topic name: 

sogno / + / out / # 



SOGNO D3.3 v1.0 

 Page 27 (41) 

Figure 18 shows an overall view of the interaction of the services developed in this project from a 
logical point of view and illustrates the dependencies between the different services. 

 

Figure 18: ViSA service interaction architecture. 

* The output of the power quality service is included in the message of the measuring devices. 

4.1 The Interfaces 

This section describes the endpoints for the corresponding services in this deliverable, namely 
FLISR, LP and GP. The remaining services are part of other working packages and will be 
presented in the deliverables D2.3 and D4.3.  

Basically, each service in this project will have two interfaces that will register a certain number 
of topics for publishing or subscribing. A complete list of the interfaces contained in the 
corresponding components were part of deliverable D2.2 and are described there individually. 

 

Figure 19: A service with its publish and subscribe endpoints 

4.1.1 Measuring Devices with the input from Power Quality Service 

Topic Mechanism Description Payload 

sogno/md/out* publish The endpoint on which the APMUs and the 
PQ service publish their measurements 

In the annex 

* The measuring device message contains the results of the power quality service. 
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4.1.2 Switches 

Topic Mechanism Description Payload 

sogno/switch/out publish The endpoint on which the 
switches publish their operational 
states. 

In the annex 

sogno/flisr/out subscribe The endpoint subscribed by the 
switches to receive the commands 
from the FLISR service 

In the annex 

4.1.3 Fault Location, Isolation, and Service Restoration 

Topic Mechanism Description Payload 

sogno/flisr/out publish The endpoint on which the 
FLISR service publishes its 
results 

In the annex 

sogno/md/out subscribe The endpoint subscribed by 
the FLISR service to receive 
the measurement data from 
the APMU devices 

In the annex 

sogno/switch/out subscribe The endpoint subscribed by 
the FLISR service to receive 
the operational states of the 
switches 

In the annex 

sogno/db/out/topology subscribe The endpoint subscribed by 
the FLISR service to get the 
topology as CIM file from the 
persistence service when the 
system is restarted, or new 
topologies have been imported 
in the GUI 

In the annex 

sogno/gui/out/flisr subscribe The endpoint subscribed by the 
FLISR service to enable or 
disable the functionality of 
FLISR for one or more grids 

In the annex 

 

Since the CIM files can be very large, they will be sent compressed by the publisher using the 
python “zlib” library. The subscriber will decompress the message and then process it further. A 
small piece of python code for reading and compressing the CIM file could look like this: 
 
import zlib 
 
compressed_cim_file = None 
 
with open('path/to/cim/cim.xml', 'rb') as cim_file: 
    cim_file = cim_file.read() 
    compressed_cim_file = zlib.compress(cim_file, zlib.Z_BEST_COMPRESSION) 

 

The subscriber receives the compressed message as the payload of a message. It is assumed 
that the payload was stored in a variable called compressed_cim_file. The following code can be 
used to decompress the CIM file. 

import zlib 
 
decompressed_cim_file = zlib.decompress(compressed_cim_file) 
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4.1.4 Load Prediction 

Topic Mechanism Description Payload 

sogno/lp/out publish The endpoint on which the load 
prediction service publishes its 
results 

In the annex 

sogno/md/out 

 

subscribe The endpoint subscribed by load 
prediction service to receive the 
measurement data 

In the annex 

sogno/db/out/lp subscribe The endpoint subscribed by load 
prediction service to receive the 
measurement data for a specific time 
period for one or more nodes or lines 

In the annex 

sogno/gui/out/lp subscribe The endpoint subscribed by load 
prediction to receive a list of selected 
nodes or lines for service processing 

In the annex 

4.1.5 Generation Prediction 

Topic Mechanism Description Payload 

sogno/gp/out publish The endpoint on which the 
generation prediction service 
publishes its results 

In the annex 

sogno/weather/out 

 

subscribe The endpoint subscribed by 
generation prediction service to 
receive the weather data 

In the annex 

sogno/db/out/gp subscribe The endpoint subscribed by load 
prediction service to receive the 
measurement data for a specific 
time period for one or more nodes or 
lines 

In the annex 

sogno/gui/out/gp subscribe The endpoint subscribed by 
generation prediction to receive a list 
of selected nodes or lines for service 
processing 

In the annex 
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5. Conclusion 

The focus behind work package WP3 has been to design services responsible of achieving 
autonomous and self-healing power systems, using innovative data driven and machine learning 
approaches. This deliverable, in combination with the already presented D3.1, provided an 
overview of the concepts and services responsible of achieving this goal. A detailed description 
of the implementation and design of these services, namely, the fault location isolation and service 
restoration (FLISR), as well as the load prediction (LP) and generation prediction (GP) services 
has been given, together with the presentation of the underlying concepts related to machine 
learning considered for their design. Machine learning data driven techniques, and deep neural 
networks are the main methods utilized to design these services. All the services have been 
tested to prove the correct design and operation of the algorithms and to validate them at proof 
of concept level. Openly available datasets or simple benchmark test grids have been used at 
this stage, since the goal was mainly to prove the validity and correctness of the implemented 
approaches and to assess possible strengths and weaknesses in relatively small test cases. 
Further work to prove the performance of the designed services, both in laboratory environment 
and in the field trials, will be presented at the end of the project through the Deliverables related 
to the trial implementation and results.  
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9. List of Abbreviations 

WP3  Work package 3 in SOGNO project 

FLISR  Fault location isolation and service restoration  

LP  Load prediction 

GP  Generation prediction  

PV  Photovoltaic 

LSTM  Long short-term memory 

RNN  Recurrent neural network 

DT   Decision tree classifier 

RF  Random forest classifier 

DNN  Deep neural network  

FFDNN  Feed-forward DNN 
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ANNEX 1 Examples of the JSON messages 

A.1.1 Example for the JSON Message from the measuring devices with power 
quality service 

{ 
  "identifier": "863921030120813-1", 
  "readings": [ 
    { 
      "timestamp": "2019-04-08T08:44:01", 
      "source": "chan_1", 
      "measurand": "activepower", 
      "data": "-0.010" 
    }, 
    { 
      "timestamp": "2019-04-08T08:44:01", 
      "source": "chan_2", 
      "measurand": "activepower", 
      "data": "0.001" 

    }, 
    { 
      "timestamp": "2019-04-08T08:44:01", 
      "source": "chan_3", 
      "measurand": "activepower", 
      "data": "-0.001" 
    }, 
    { 
      "timestamp": "2019-04-08T08:44:01", 
      "source": "chan_1", 
      "measurand": "apparentpower", 
      "data": "-0.010" 
    }, 
    { 
      "timestamp": "2019-04-08T08:44:01", 
      "source": "chan_2", 

      "measurand": "apparentpower", 
      "data": "0.000" 
    }, 
    { 
      "timestamp": "2019-04-08T08:44:01", 
      "source": "chan_3", 
      "measurand": "apparentpower", 
      "data": "0.037" 
    }, 
    { 
      "timestamp": "2019-04-08T08:44:01", 
      "source": "chan_1", 
      "measurand": "current", 
      "data": "0.000" 
    }, 
    { 
      "timestamp": "2019-04-08T08:44:01", 

      "source": "chan_2", 
      "measurand": "current", 
      "data": "0.000" 
    }, 
    { 
      "timestamp": "2019-04-08T08:44:01", 
      "source": "chan_3", 
      "measurand": "current", 
      "data": "0.095" 
    }, 
    { 
      "timestamp": "2019-04-08T08:44:01", 
      "source": "chan_N", 
      "measurand": "current", 
      "data": "0.308" 
    }, 
    { 

      "timestamp": "2019-04-08T08:44:01", 
      "source": "chan_1", 
      "measurand": "frequency", 
      "data": "50.010" 
    }, 
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    { 
      "timestamp": "2019-04-08T08:44:01", 

      "source": "chan_2", 
      "measurand": "frequency", 
      "data": "50.000" 
    }, 
    { 
      "timestamp": "2019-04-08T08:44:01", 
      "source": "chan_3", 
      "measurand": "frequency", 
      "data": "50.010" 
    }, 
    { 
      "timestamp": "2019-04-08T08:44:01", 
      "source": "chan_1", 
      "measurand": "powerfactor", 
      "data": "-1.000" 
    }, 
    { 

      "timestamp": "2019-04-08T08:44:01", 
      "source": "chan_2", 
      "measurand": "powerfactor", 
      "data": "-1.000" 
    }, 
    { 
      "timestamp": "2019-04-08T08:44:01", 
      "source": "chan_3", 
      "measurand": "powerfactor", 
      "data": "0.053" 
    }, 
    { 
      "timestamp": "2019-04-08T08:44:01", 
      "source": "chan_1", 
      "measurand": "reactivepower", 
      "data": "0.000" 

    }, 
    { 
      "timestamp": "2019-04-08T08:44:01", 
      "source": "chan_2", 
      "measurand": "reactivepower", 
      "data": "0.00" 
    }, 
    { 
      "timestamp": "2019-04-08T08:44:01", 
      "source": "chan_3", 
      "measurand": "reactivepower", 
      "data": "0.037" 
    }, 
    { 
      "timestamp": "2019-04-08T08:44:01", 
      "source": "chan_1", 
      "measurand": "volt", 

      "data": "228.720" 
    }, 
    { 
      "timestamp": "2019-04-08T08:44:01", 
      "source": "chan_2", 
      "measurand": "volt", 
      "data": "229.719" 
    }, 
    { 
      "timestamp": "2019-04-08T08:44:01", 
      "source": "chan_3", 
      "measurand": "volt", 
      "data": "229.300" 
    } 
  ] 
} 

A.1.2 Example for the JSON message from the switches 

{ 
    "version": "1.0", 
    "identifier": "756294756273", 
    "type": "switch_input", 
    "timestamp": "2019-04-08T08:44:01", 
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    "phase": "a", 
    "action": "closed", 

    "location": [ 
        { 
            "node1": "863921030120813-1", 
            "node2": "863921030120746-1" 
        } 
    ] 

} 

A.1.3 Example for the JSON message from FLISR 

{ 
    "version": "1.0", 
    "type": "flisr_result", 

    "timestamp": "2019-04-08T08:44:01", 
    "switches": [ 
        { 
            "identifier": "756294784691", 
            "cmd": "opening/closing" 
        } 
    ] 
} 

A.1.4 Example for a CIM file 

<?xml version="1.0" encoding="utf-8"?> 
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"  

    xmlns:cim="http://iec.ch/TC57/2012/CIM-schema-cim16#"  
    xmlns:md="http://iec.ch/TC57/61970-552/ModelDescription/1#"  
    xmlns:entsoe="http://entsoe.eu/Secretariat/ProfileExtension/2#"  
    xmlns:neplan="http://www.neplan.ch#"> 
    <md:FullModel rdf:about="urn:uuid:f2ff6631-14b2-42d2-8fdb-a2edc910aefe"> 
        <md:Model.created>2018-11-06T16:34:52</md:Model.created> 
        <neplan:Model.createdBy>NEPLAN by Busarello + Cott + Partner AG, 
Switzerland</neplan:Model.createdBy> 
        <md:Model.scenarioTime>2018-11-06T16:34:50</md:Model.scenarioTime> 
        <md:Model.version>7</md:Model.version> 
        <md:Model.DependentOn rdf:resource="urn:uuid:25276efc-54c7-450a-87d6-6f58ae3470a9"/> 
        <md:Model.description>NEPLAN</md:Model.description> 
        <md:Model.modelingAuthoritySet>FULL</md:Model.modelingAuthoritySet> 
        <md:Model.profile>http://iec.ch/TC57/61970-456/Topology/3</md:Model.profile> 
    </md:FullModel> 
    <cim:NameType rdf:ID="_180dea0a-f4a7-4fec-90f4-fbb189409882"> 

        <cim:NameType.name>description</cim:NameType.name> 
    </cim:NameType> 
    <cim:TopologicalNode rdf:ID="N0"> 
        <cim:IdentifiedObject.name>N0</cim:IdentifiedObject.name> 
        <cim:TopologicalNode.BaseVoltage rdf:resource="#_fd4aebc6-81ee-42dd-bea2-
e3368f769175"/> 
        <cim:TopologicalNode.ConnectivityNodeContainer rdf:resource="#_53a66d62-e48c-4548-
bdb0-8d46f596c259"/> 
    </cim:TopologicalNode> 
 
    <cim:Terminal rdf:about="#E-132"> 
        <cim:Terminal.connected>true</cim:Terminal.connected> 
        <cim:Terminal.TopologicalNode rdf:resource="#N4"/> 
    </cim:Terminal> 
 
    <cim:NameType rdf:ID="_3e875c98-dd64-4d7d-af2b-be41ca499dd6"> 
        <cim:NameType.name>description</cim:NameType.name> 

    </cim:NameType> 
    <cim:BaseVoltage rdf:ID="_0a92d9bb-71b6-4256-aa94-54fde8700496"> 
        <cim:BaseVoltage.nominalVoltage>20.00</cim:BaseVoltage.nominalVoltage> 
    </cim:BaseVoltage> 
 
    <cim:VoltageLevel rdf:ID="_c9026ac7-114f-42db-ad42-c62d5f6dd04e"> 
        <cim:IdentifiedObject.name>98</cim:IdentifiedObject.name> 
        <cim:VoltageLevel.Substation rdf:resource="#_3FA2-2E-F1-00000000000000003938"/> 
        <cim:VoltageLevel.BaseVoltage rdf:resource="#_0a92d9bb-71b6-4256-aa94-54fde8700496"/> 
    </cim:VoltageLevel> 
 
    <cim:Substation rdf:ID="_3FA2-2E-F1-00000000000000323130"> 
        <cim:IdentifiedObject.name>N2</cim:IdentifiedObject.name> 
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        <cim:Substation.Region rdf:resource="#_f86cebef-3021-4a41-895e-b0d480beee45"/> 
    </cim:Substation> 

 
    <cim:GeographicalRegion rdf:ID="_452d9bf4-88a4-497a-93ce-cf500fc681e5"> 
        <cim:IdentifiedObject.name>Area 1</cim:IdentifiedObject.name> 
    </cim:GeographicalRegion> 
 
    <cim:SubGeographicalRegion rdf:ID="_f86cebef-3021-4a41-895e-b0d480beee45"> 
        <cim:IdentifiedObject.name>Zone 1</cim:IdentifiedObject.name> 
        <cim:SubGeographicalRegion.Region rdf:resource="#_452d9bf4-88a4-497a-93ce-
cf500fc681e5"/> 
    </cim:SubGeographicalRegion> 
 
    <cim:OperationalLimitType rdf:ID="_bcae0a62-8109-4523-b661-4bc89de7c05c"> 
        <cim:IdentifiedObject.name>PATL</cim:IdentifiedObject.name> 
        
<cim:OperationalLimitType.acceptableDuration>45000</cim:OperationalLimitType.acceptableDuratio
n> 
        <cim:OperationalLimitType.direction rdf:resource="http://iec.ch/TC57/2012/CIM-schema-

cim16#OperationalLimitDirectionKind.absoluteValue"/> 
    </cim:OperationalLimitType> 
 
    <cim:EnergyConsumer rdf:ID="LOAD-I-7"> 
        <cim:IdentifiedObject.name>LOAD-I-7</cim:IdentifiedObject.name> 
        <cim:EnergyConsumer.p>0.076500</cim:EnergyConsumer.p> 
        <cim:EnergyConsumer.q>0.047410</cim:EnergyConsumer.q> 
        <cim:Equipment.aggregate>false</cim:Equipment.aggregate> 
        <cim:Equipment.EquipmentContainer rdf:resource="#_bad2e7c9-5aa8-4017-af2c-
5ef5dcf65cf9"/> 
    </cim:EnergyConsumer> 
    <cim:Terminal rdf:ID="E-337"> 
        <cim:IdentifiedObject.name>LOAD-I-7_0</cim:IdentifiedObject.name> 
        <cim:Terminal.sequenceNumber>1</cim:Terminal.sequenceNumber> 
        <cim:Terminal.ConductingEquipment rdf:resource="#LOAD-I-7"/> 
    </cim:Terminal> 

 
    <cim:SvVoltage rdf:ID="N0_5B20"> 
        <cim:SvVoltage.v>110.000000</cim:SvVoltage.v> 
        <cim:SvVoltage.angle>-0e+000</cim:SvVoltage.angle> 
        <cim:SvVoltage.TopologicalNode rdf:resource="#N0"/> 
    </cim:SvVoltage> 
 
    <cim:SvPowerFlow rdf:ID="LOAD-I-7-sv"> 
        <cim:SvPowerFlow.p>0.076500</cim:SvPowerFlow.p> 
        <cim:SvPowerFlow.q>0.047410</cim:SvPowerFlow.q> 
        <cim:SvPowerFlow.Terminal rdf:resource="#E-337"/> 
    </cim:SvPowerFlow> 
 
    <cim:Diagram rdf:ID="_9a844459-cf44-48c4-b5ae-e56d7446f017"> 
        <cim:IdentifiedObject.name>Diagram 0</cim:IdentifiedObject.name> 
        <cim:Diagram.orientation rdf:resource="http://iec.ch/TC57/2010/CIM-schema-
cim16#OrientationKind.negative"/> 

    </cim:Diagram> 
 
    <cim:DiagramObject rdf:ID="_450e8d17-a49d-476b-ae6e-ef263e5e02b5"> 
        <cim:DiagramObject.rotation>0</cim:DiagramObject.rotation> 
        <cim:DiagramObject.IdentifiedObject rdf:resource="#E-1229744368"/> 
        <cim:DiagramObject.Diagram rdf:resource="#_9a844459-cf44-48c4-b5ae-e56d7446f017"/> 
    </cim:DiagramObject> 
    <cim:DiagramObjectPoint rdf:ID="_b5988043-8ea2-42e5-a9af-0c5400027158"> 
        <cim:DiagramObjectPoint.sequenceNumber>1</cim:DiagramObjectPoint.sequenceNumber> 
        <cim:DiagramObjectPoint.DiagramObject rdf:resource="#_450e8d17-a49d-476b-ae6e-
ef263e5e02b5"/> 
        <cim:DiagramObjectPoint.xPosition>120.000000</cim:DiagramObjectPoint.xPosition> 
        <cim:DiagramObjectPoint.yPosition>80.000000</cim:DiagramObjectPoint.yPosition> 
    </cim:DiagramObjectPoint> 
</rdf:RDF> 

A.1.5 Example for JSON file to enable or disable FLISR 

{ 
  "version": "1.0", 
  "type": "gui_flisr", 
  "timestamp": "2019-04-08T08:44:01", 
  "user": "xyz", 
  "cmd": "enable/disable" 



SOGNO D3.3 v1.0 

 Page 39 (41) 

} 

A.1.6 Example for the JSON output message from the LP service  

{ 
    "version": "1.0", 
    "type": "lp_out", 
    "nodes": [ 
        { 
            "node_id": "123456", 
            "values": [ 
                { 
                    "timestamp": "2019-04-08T08:44:01", 
                    "phase": "a", 
                    "measurand": "activepower", 

                    "data": 123.3 
                }, 
                { 
                    "timestamp": "2019-04-08T08:44:01", 
                    "phase": "a", 
                    "measurand": "reactivepower", 
                    "data": 123.3 
                }, 
                { 
                    "timestamp": "2019-04-08T08:45:01", 
                    "phase": "a", 
                    "measurand": "activepower", 
                    "data": 125.3 
                }, 
                { 
                    "timestamp": "2019-04-08T08:45:01", 
                    "phase": "a", 

                    "measurand": "reactivepower", 
                    "data": 125.3 
                } 
            ] 
        }, 
        { 
            "node_id": "987654", 
            "values": [ 
                { 
                    "timestamp": "2019-04-08T08:44:01", 
                    "phase": "a", 
                    "measurand": "activepower", 
                    "data": 123.3 
                }, 
                { 
                    "timestamp": "2019-04-08T08:44:01", 

                    "phase": "a", 
                    "measurand": "reactivepower", 
                    "data": 123.3 
                }, 
                { 
                    "timestamp": "2019-04-08T08:45:01", 
                    "phase": "a", 
                    "measurand": "activepower", 
                    "data": 125.3 
                }, 
                { 
                    "timestamp": "2019-04-08T08:45:01", 
                    "phase": "a", 
                    "measurand": "reactivepower", 
                    "data": 125.3 
                } 
            ] 

        } 
    ] 
} 

A.1.7 Example for the JSON output message from the GUI to manage the LP 
service 

{ 
    "version": "1.0", 
    "type": "lp_request", 
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    "from": "2019-04-08T08:00:00", 
    "to": "2019-04-09T08:00:00", 

    "node_id": [ 
        "863921030120813-1", 
        "863921030120746-1" 
    ] 
} 

A.1.8 Example for the JSON output message from the DB with the LP necessary 
input 

{ 
    "version": "1.0", 
    "type": "db_lp", 
    "nodes": [ 
        { 
            "node_id": "123456", 
            "values": [ 
                { 
                    "timestamp": "2019-04-08T08:44:01", 
                    "phase": "a", 
                    "measurand": "activepower", 
                    "data": 123.3 
                }, 
                { 
                    "timestamp": "2019-04-08T08:44:01", 

                    "phase": "a", 
                    "measurand": "reactivepower", 
                    "data": 123.3 
                }, 
                { 
                    "timestamp": "2019-04-08T08:45:01", 
                    "phase": "a", 
                    "measurand": "activepower", 
                    "data": 125.3 
                }, 
                { 
                    "timestamp": "2019-04-08T08:45:01", 
                    "phase": "a", 
                    "measurand": "reactivepower", 
                    "data": 125.3 
                } 

            ] 
        }, 
        { 
            "node_id": "987654", 
            "values": [ 
                { 
                    "timestamp": "2019-04-08T08:44:01", 
                    "phase": "a", 
                    "measurand": "activepower", 
                    "data": 123.3 
                }, 
                { 
                    "timestamp": "2019-04-08T08:44:01", 
                    "phase": "a", 
                    "measurand": "reactivepower", 
                    "data": 123.3 
                }, 

                { 
                    "timestamp": "2019-04-08T08:45:01", 
                    "phase": "a", 
                    "measurand": "activepower", 
                    "data": 125.3 
                }, 
                { 
                    "timestamp": "2019-04-08T08:45:01", 
                    "phase": "a", 
                    "measurand": "reactivepower", 
                    "data": 125.3 
                } 
            ] 
        } 
    ] 
} 
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A.1.9 Example for the JSON output message from the GUI to manage the GP 
service 

{ 
    "version": "1.0", 
    "type": "gp_request", 
    "from": "2019-04-08T08:00:00", 
    "to": "2019-04-09T08:00:00", 

    "node_id": [ 
        "863921030120813-1", 
        "863921030120746-1" 
    ] 
} 

A.1.10 Example for the JSON output message from the DB with the GP necessary 
input 

{ 
    "version": "1.0", 
    "type": "db_gp", 
    "nodes": [ 
        { 
            "node_id": "123456", 
            "values": [ 
                { 
                    "timestamp": "2019-04-08T08:44:01", 
                    "phase": "a", 
                    "measurand": "activepower", 
                    "data": 123.3 
                }, 
                { 
                    "timestamp": "2019-04-08T08:45:01", 

                    "phase": "a", 
                    "measurand": "activepower", 
                    "data": 123.4 
                }, 
                { 
                    "timestamp": "2019-04-08T08:46:01", 
                    "phase": "a", 
                    "measurand": "activepower", 
                    "data": 123.5 
                } 
            ] 
        }, 
        { 
            "node_id": "987654", 
            "values": [ 
                { 
                    "timestamp": "2019-04-08T08:44:01", 

                    "phase": "a", 
                    "measurand": "activepower", 
                    "data": 123.3 
                }, 
                { 
                    "timestamp": "2019-04-08T08:45:01", 
                    "phase": "a", 
                    "measurand": "activepower", 
                    "data": 123.4 
                }, 
                { 
                    "timestamp": "2019-04-08T08:46:01", 
                    "phase": "a", 
                    "measurand": "activepower", 
                    "data": 123.5 
                } 

            ] 
        } 
    ] 
} 

 


